MATHS

Asked by AmyAn obtuse angle is an angle greater than 90° and the sum of angles in a triangle is 180°. If we had two obtuse angles then this would mean that the sum of the angles of the triangle would be greater than 180°, as both of the angles would be greater than 90° and we would still have a third angle to account for. So we can't have more than 1 obtuse angle.

An obtuse angle is an angle larger than 90, the sum of the angles of a triangle is 180, then if one of the angles of a triangle is larger than 90 then the sum of the other angles is absolutely less than 90, therefore a triangle can have only one obtuse angle.

An obtuse angle is defined as greater than 90° and a triangle must have angles that add up to exactly 180°, nothing more or less. So if you have two angles that are obtuse, they will always add up to more than 180 making the third angle impossible. Therefore Laura is correct

To answer a bit more clearly & algebraically: if the 3 angles in a triangle are denoted: x, y & z and we assume the opposite of Lauras proposition, that 2 angles are obtuse (>90), can we solve for the 3rd angle? we know x + y + z = 180. .... (1) if assume x > 90 & y > 90 then it follows that x + y > 180 ..... (2) therefore by combining (1) & (2) we can imply that z < 0, and as all angles in a triangle must be greater than 0, the original proposition of being able to have 2 obtuse angles in a triangle must be impossible. Hence we must agree with Laura that a triangle cannot have two obtuse angles.

Obtuse angle -> larger than 90° Sum of all three angles -> 180° Can you get the answer from that?

Get an answer in 5 minutes

We'll notify as soon as your question has been answered.

Ask a question to our educators

Scoodle's video lessons make learning easy and fun. Try it for yourself, the first lesson is free!